KAVOSH T22 is a controllable single-phase current and voltage source with the rated output power of 5 kVA. This is designed and produced by ESFA Group which is suitable for performing various kinds of commissioning, periodic, and diagnostic tests.

KAVOSH T22 can be employed in high voltage substations, distribution substations, power plants, industrial plants, high voltage equipment manufacturer, research centers, and universities. The output voltages can be controlled in the range of 0^2200 V-AC and 0^260 V-DC .

In addition, its output current can be controlled in the range of 0~1000 A-AC and 0~400 A-DC. Moreover, the frequency of AC voltage and current is controllable between 15 and 120 Hz.

Furthermore, KAVOSH T22 can be synchronized with an external current or voltage source to generate either current or voltage with the same frequency, adjustable phase angle difference, and specified amplitude (up to 1000 A and 2200 V).

Applications of such a feature consist of amplifying an electrical signal, performing three-phase tests using three separate KAVOSH T22 devices, distance or directional relay function test by the primary injection method, and etc.

KAVOSH T22 is equipped with a built-in server to which every type of processing device with an internet browser can be connected (e.g., a laptop, PC, tablet, or cellphone). To do so, wireless communication (Wi-Fi) or direct connection by CAT 6 network cable can be utilized. Furthermore, a touch screen LCD mounted on KAVOSH T22 can be used to perform all tests without using an external processing device.

The software easily provides all the required reports and makes a database. Moreover, all the test results can optionally be sent to a server (ESFAnalysis software) by which they will be scrutinized based on standard guidelines, comparison to similar cases and historical test results, and theoretical analysis.

KAVOSH T22 has some software and hardware optional modules including

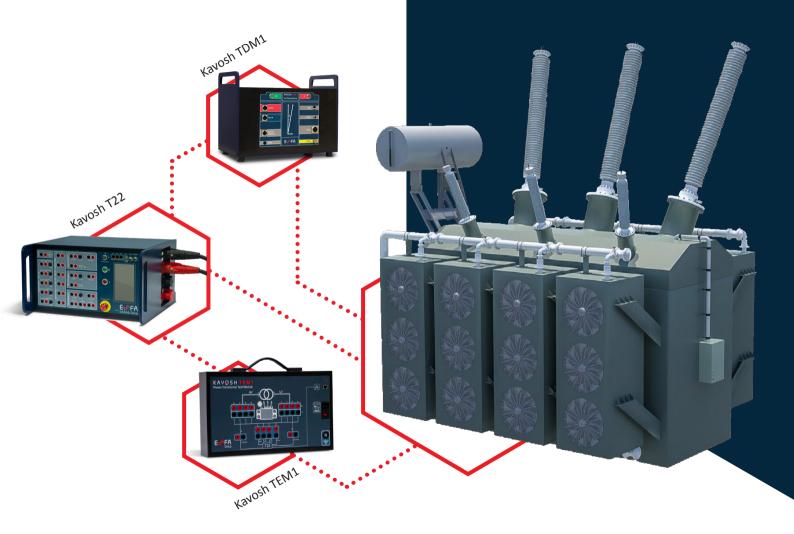
dissipation factor (Tan Delta) and capacitance measurement (TDM1 module), switch box for easily performing automatic tests on three-phase transformers (TEM1), coupling module for transmission line, cable, and grounding system testing (CM1), and circuit breaker test module (CB1).

Software

- Web-based software eliminating need for installation and run on a computer, tablet and cellphone
- Specific test rooms with corresponding wiring diagrams depending on the set parameters
- User-friendly computer software supporting both Wi-Fi and Ethernet cable connections
- Touch LCD for handling tests with the same performance as the connected computer
- Aided software in all test steps automatically generating test results
- Online project management website: kavosh.online
- Manageable database

Current Transformer Testing

- Capacitance and dissipation factor (Tan Delta) measurement (up to 10 kV by TDM1 external module)
- Test and analysis of TPY- and TPZ-type CTs (magnetizing characteristic and ratio error)
- Excitation and Hysteresis Curves (up to 2.2 kV @ 50 Hz)
- Ratio and Polarity (by injecting current into primary side up to 1000 A)
- Ratio and Polarity (by applying voltage on secondary side up to 2.2 kV)
- Power frequency withstand voltage (up to 2.2 kV) for secondary side winding and circuit



- Secondary side DC winding resistance
- Secondary burden measurement
- Core demagnetizing

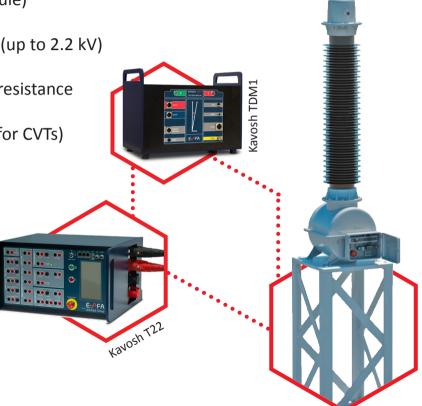
Power Transformer Testing

- Switch box for automatic and quick performing tests on three-phase transformers (by TEM1 external module)
- Capacitance and dissipation factor (Tan Delta) measurement (up to 10 kV by TDM1 external module)
- High voltage excitation current and loss measurement (up to 10 kV by TDM1 external module)
- Turn ratio test on both regular and phase shifting transformers (based on IEC61378-1 method)
- Winding resistance (by injecting DC current in the range of 0 to 10 A or 10 to 100 A, or applying DC voltage)

- Dynamic resistance test of on load tap changers (up to 10 A DC)
- No-load current (excitation current) and loss (up to 2.2 kV)
- Short circuit and zero sequence impedance (up to 10 A)
- Magnetic core demagnetizing (up to 10 A DC)
- Magnetic balance (up to 2.2 kV)
- Vector group

Voltage Transformer (CVT, PT)

 Capacitance and dissipation factor (Tan Delta) measurement (up to 10 kV by TDM1 external module)


• Power frequency withstand voltage (up to 2.2 kV)

Primary and secondary DC winding resistance

• Short circuit impedance (especially for CVTs)

Ratio and polarity (up to 2.2 kV)

Secondary burden

Circuit Breaker (CB)

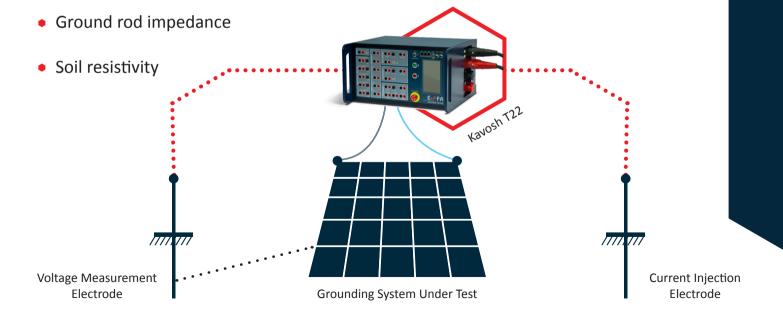
- Dual ground method (for time test under electromagnetic noises of in-service high voltage substations)
- Motor current and spring charge time monitoring (by using optional DC clamp-on ammeter)
- Trip/close coil minimum pickup voltage (up to 260 V DC/AC, 10 A)
- Time test (for various duty cycles such as O, C, CO, OC, COC, OCO)
- Static contact resistance (by injecting DC current up to 400 A)
- Power frequency withstand voltage (up to 2.2 kV)

- Trip/close coil current monitoring
- Pole discordance analysis

Overhead Line and Cable

Ground Grid

• Positive and zero sequence impedance calculation (by ESFAnalysis software based on tower outline and conductor specifications) • Positive and zero sequence impedance measurement (by CM1 module: 550 V- 10 A / 55 V - 100 A) avosh T22


Kavosh EMI

Kayosh CM3

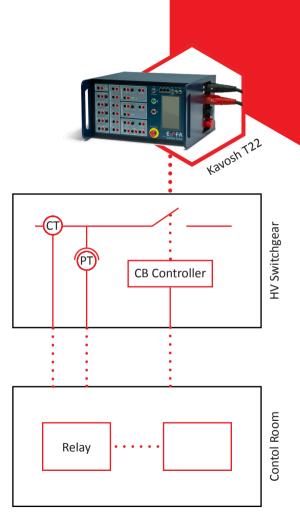
Ground Grid

Grounding System

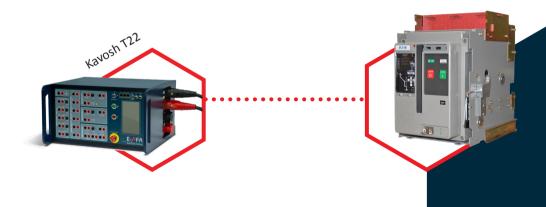
- Safety voltages including step, touch, transfer, metal-to-metal voltages (especially by using CM1 module)
- Ground connection integrity check (by injecting DC current up to 400 A)
- Ground grid impedance (separately resistance and reactance)

Rotating Machine

- Capacitance and dissipation factor (Tan Delta) measurement (up to 10 kV by TDM1 external module)
- Capacitance and dissipation factor (Tan Delta) measurement (up to 25 kV by external module)
- Stator and rotor DC winding resistance
- Stator impedance



Entire Protection System


(Instrument transformers, relays, and trip command circuit by injecting single-phase current and voltage)

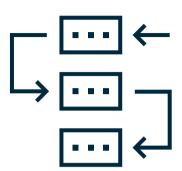
- High-impedance differential relay (including REF, busbar, motor, and generator)
- Low-impedance differential relay (including REF, busbar, motor, and generator)
- Distance relay (by CM1 external module)
- Overcurrent and Earth Fault relays
- Directional overcurrent relay
- Directional earth fault relay

Low Voltage Breakers (MCB, MCCB, and ACB) and Fuse

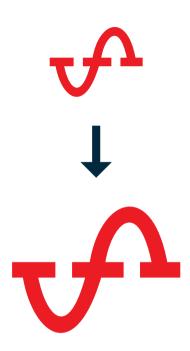
- I-t characteristic (clearing time) for low-voltage, medium-voltage, and power fuses (by AC current injecting up to 1000 A)
- I-t characteristic for low-voltage circuit breakers (MCB, MCCB, and ACB)

Quick Mode

- Injecting current up to 1000 A AC (15 to 120 Hz) and up to 400 A DC
- Applying voltage up to 2200 v AC (15 to 120 Hz) and up to 260 V DC
- Adjusting limitations on test duration time, voltage, and current
- Setting triggering mode (using wet/dry binary inputs and analog input)
- Selecting measured parameter
 M1 (300 V / 10 A / 10 V), M2 (300 V / 10 A / 10 V), and
 M3 (300 V / 10 A / 5 V-A / 5 V-B / 5 V-C)
 - Calculating complex parameters including R / X / Z / L /
- C / P / Q / S based on measured signals



State Sequencer Mode


- Employing up to 10 sequences with different amplitude and measuring time difference between states
- Testing automatic reclosing circuit breaker performance
- Injecting current up to 1000 A AC (15 to 120 Hz) and up to 400 A DC

- Applying voltage up to 2200 v AC (15 to 120 Hz) and up to 260 V DC
- Adjusting limitations on test duration time, voltage, and current
- Setting triggering mode (using wet/dry binary inputs and analog input)
- Selecting measured parameter
 M1 (300 V / 10 A / 10 V), M2 (300 V / 10 A / 10 V), and M3 (300 V / 10 A / 5 V-A / 5 V-B / 5 V-C)
- Calculating complex parameters including R / X / Z / L / C / P / Q / S based on measured signals

Amplifier Mode

- Operation in AC voltage / current mode (15 Hz to 120 Hz variable frequency)
 Up to 2200 V AC / 1000 A AC
- Synchronization with AC voltage or current
- Injection voltage / current signals with amplification factor and phase shift relative to the reference signal
- Synchronization of up to 3 KAVOSH devices (with application of three-phase tests)

Current Output

Output	Amplitude	t _{max}	V _{max}	Power	frequency
	1000 A	30 s	5 V	5000 VA	15 120 Hz
1000 A AC	500 A	10 min	5 V	2000 VA	15 120 Hz
	200 A	>2 h	5 V	1000 VA	15 120 Hz
400 A DC	400 A	2 min	5 V	2000 VA	DC
	200 A	10 min	5 V	1000 VA	DC
	100 A	>2 h	5 V	500 VA	DC
10 A AC (rms)	10 A	10 min	260 V	2600 VA	15 120 Hz
	3 A	>2 h	260V	780 VA	15 120 Hz
10 A DC	10 A	10 min	260V	2600 VA	DC
	3 A	>2h	260V	780VA	DC

Voltage Output

Output	Amplitude	t _{max}	max	Power	frequency
	2600V	>2 h	3 A	780 VA	120 15 Hz
	2600V	10 min	10 A	2600 VA	120 15 Hz
2000 V AC	7600V	>2h	1.5 A	1200 VA	120 15 Hz
2000 V AC	7600V	10 min	5 A	3800 VA	120 15 Hz
	22600V	>2h	0.5 A	1130 VA	120 15 Hz
	22600V	1 min	2 A	2260 VA	120 15 Hz
260 V DC	2600 V	>2h	3 A	780 VA	DC
	2600 V	10 min	10 A	2600 VA	DC

• Internal Measurement of Outputs

		Gua	ranteed accu	ıracy	Typical accuracy		
Output	Range	Amplitude		Full scale	Amplitude		Full scale
		Reading error	Full scale error	Full scale error	Reading error	Full scale error	Full scale error
1000 A AC	-	%0.20	%0.20	0.2°	%0.10	%0.10	0.1°
400 A DC	-	%0.30	%0.10	-	%0.10	%0.15	0.1°
	2000 V	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°
2260 V AC	1000 V	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°
	500 V	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°
	10 A	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°
	500 mA	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°
260 V DC	300 V	%0.10	%0.15	-	%0.05	%0.08	-
	15 V	%0.10	%0.15	-	%0.05	%0.08	-
	10 A	%0.10	%0.15	-	%0.05	%0.08	-
	500 mA	%0.10	%0.15	-	%0.05	%0.08	-
Digital Output	8 A DC	%0.20	%0.25	-	%0.15	%0.20	-

• Internal Measurement of Outputs

	Impedance		Guai	anteed acc	curacy Typic		pical accur	ical accuracy	
Input		Range	Amplitude		Phase	Amplitud	e	Phase	
			Reading error	Full scale error	Full scale error	Reading error	Full scale error	Full scale error	
N4200 \/	500 kΩ	300 V	0.1 %	%0.10	0.2°	%0.07	%0.05	0.1°	
Mx300-V peak		15 V	%0.10	%0.10	0.2°	%0.07	%0.05	0.1°	
реак		750 mV	%0.20	%0.10	0.2°	%0.15	%0.05	0.1°	
	<0.1 Ω	10A AC	%0.10	%0.10	0.2°	%0.05	%0.07	0.1°	
Mx10-A peak		500 mA AC	%0.10	%0.10	0.2°	%0.05	%0.08	0.1°	
AC/DC		10A DC	%0.05	%0.15	-	%0.05	%0.08	-	
		500 mA DC	%0.05	%0.15	-	%0.05	%0.08	-	
	1 ΜΩ	7 V	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°	
M10-2V.peak		350 mV	%0.10	%0.10	0.2°	%0.08	%0.05	0.1°	
		20 mV	%0.20	%0.20	0.2°	%0.10	%0.08	0.1°	
M10-1V DC	-	10 V	%0.05	%0.15	-	%0.05	%0.08	-	
		500 mV	%0.05	%0.15	-	%0.05	%0.08	-	
		25 mV	%0.10	%0.30	-	%0.10	%0.10	-	
M5-3V.peak	1 ΜΩ	3.5 V	%0.10	%0.10	0.2°	%0.08	%0.08	0.1°	

Tan Delta Module (TDM1)

- Tan Delta measurement (with uncertainty less than 0.01%)
- Capacitance measurement (100pF 50 uF)
- Power transformer ratio and no-load current (up to 10 kV)

Technical Data Tan Delta Module (TDM1)

High Voltage Output								
Terminal	Voltage	Frequency	Current	S	t _{max}			
High Voltage	0 10 10/	15 120 Uz	300 mA	3000 VA	30 s			
Output	010 kV	15120 Hz	100 mA	1000 VA	> 60 min			
		Measuren	nent					
Input	Range Typical Accuracy							
Input A Input B	05 A AC	Error < 0.2% of reading + 100nA						
Earth								
Capacitance								
Range	nge Typical Accuracy							
100 pF3 uF	Error < 0.2% of reading + 10 pF							
Dissipation Factor								
Range	Typical Accuracy		Condi	tions				
010 %	Error < 0.2% of reading + 0.01% V test > 500 V							

HAFEZ

Art of Protection

Protection Relays

SARV

Decide with Confidence

Specialized Power System Software

PAYESH

Sense of Precision

Measurement and Automation Devices

Diagnostic Test Tools

Complementary Modules

Circuit Breaker Test Module (CB1)

- Safe tests using dual ground method
- One wiring for all tests
- Fast mounting on main module to simplify tests

Three-Phase Transformer Automatic Test Module (TEM1)

- One wiring for all tests on three phases
- Wrong wiring detection
- Test duration reduction
- Easy and safe test performing

Coupling Module (CM1)

- Line impedance measurement in presence of induced voltage
- Grounding system tests in presence of source of errors
- Measurement of ground grid safety voltages (step, touch, metal-to-metal voltages)

Manufacturer of

- Protection Relays
- Diagnostic Test set
- Measurement and Automation Devices
- Specialized Power System Software

ESFA Group - HEADQUARTER

- **(0)** 00982188013196
- **www.esfagroup.com**
- info@esfagroup.com
- University of Tehran Science & Technology Park, North Kargar st., Tehran, Iran

ESFA Group - ARIXET

- 0033614535524
- www.arixet.fr
- info@arixet.fr
- 13310 ST MARTIN DE CRAU, France

ESFA Group - AFRAMEL

- **©** 00213549572988
- (##) www. aframel.com
- info@aframel.com
- 76 Lot El Feth El biar Alger, Algeria